What is numpy.zeros()?

numpy.zeros() or np.zeros Python function is used to create a matrix full of zeroes. numpy.zeros() in Python can be used when you initialize the weights during the first iteration in TensorFlow and other statistic tasks.

numpy.zeros() function Syntax

numpy.zeros(shape, dtype=float, order='C')

Python numpy.zeros() Parameters

Here,

  • Shape: is the shape of the numpy zero array
  • Dtype: is the datatype in numpy zeros. It is optional. The default value is float64
  • Order: Default is C which is an essential row style for numpy.zeros() in Python.

Python numpy.zeros() Example

import numpy as np
np.zeros((2,2))

Output:

array([[0., 0.],
          [0., 0.]])

Example of numpy zero with Datatype

 import numpy as np
np.zeros((2,2), dtype=np.int16)

Output:

array([[0, 0],
         [0, 0]], dtype=int16)

What is numpy.ones()?

np.ones() function is used to create a matrix full of ones. numpy.ones() in Python can be used when you initialize the weights during the first iteration in TensorFlow and other statistic tasks.

Python numpy.ones() Syntax

numpy.ones(shape, dtype=float, order='C')

Python numpy.ones() Parameters

Here,

  • Shape: is the shape of the np.ones Python array
  • Dtype: is the datatype in numpy ones. It is optional. The default value is float64
  • Order: Default is C which is an essential row style.

Python numpy.ones() 2D Array with Datatype Example

import numpy as np
np.ones((1,2,3), dtype=np.int16)			

Output:

array([[[1, 1, 1],        
       [1, 1, 1]]], dtype=int16)			

 

YOU MIGHT LIKE: