Tutorial de bosque aleatorio de R con ejemplo
¿Qué es el bosque aleatorio en R?
Los bosques aleatorios se basan en una idea simple: "la sabiduría de la multitud". La suma de los resultados de múltiples predictores da una mejor predicción que el mejor predictor individual. Un grupo de predictores se llama junto. Por eso esta técnica se llama Ensemble Learning.
En el tutorial anterior, aprendiste cómo usar Árboles de decisión para hacer una predicción binaria. Para mejorar nuestra técnica, podemos entrenar a un grupo de Clasificadores de árbol de decisión, cada uno en un subconjunto aleatorio diferente del conjunto de trenes. Para hacer una predicción, simplemente obtenemos las predicciones de todos los árboles individuales y luego predecimos la clase que obtiene la mayor cantidad de votos. Esta técnica se llama Bosque al azar.
Paso 1) Importar los datos
Para asegurarse de tener el mismo conjunto de datos que en el tutorial para árboles de decisión, la prueba del tren y el equipo de prueba se almacenan en Internet. Puedes importarlos sin realizar ningún cambio.
library(dplyr) data_train <- read.csv("https://raw.githubusercontent.com/guru99-edu/R-Programming/master/train.csv") glimpse(data_train) data_test <- read.csv("https://raw.githubusercontent.com/guru99-edu/R-Programming/master/test.csv") glimpse(data_test)
Paso 2) Entrena el modelo
Una forma de evaluar el rendimiento de un modelo es entrenarlo en varios conjuntos de datos más pequeños y evaluarlos con respecto al otro conjunto de pruebas más pequeño. Esto se llama el Validación cruzada F-fold . R tiene una función para dividir aleatoriamente un número de conjuntos de datos de casi el mismo tamaño. Por ejemplo, si k=9, el modelo se evalúa en la carpeta nueve y se prueba en el conjunto de prueba restante. Este proceso se repite hasta que se hayan evaluado todos los subconjuntos. Esta técnica se usa ampliamente para la selección de modelos, especialmente cuando el modelo tiene parámetros que ajustar.
Ahora que tenemos una forma de evaluar nuestro modelo, debemos descubrir cómo elegir los parámetros que generalicen mejor los datos.
El bosque aleatorio elige un subconjunto aleatorio de características y construye muchos árboles de decisión. El modelo promedia todas las predicciones de los árboles de Decisiones.
El bosque aleatorio tiene algunos parámetros que se pueden cambiar para mejorar la generalización de la predicción. Utilizará la función RandomForest() para entrenar el modelo.
La sintaxis de Randon Forest es
RandomForest(formula, ntree=n, mtry=FALSE, maxnodes = NULL) Arguments: - Formula: Formula of the fitted model - ntree: number of trees in the forest - mtry: Number of candidates draw to feed the algorithm. By default, it is the square of the number of columns. - maxnodes: Set the maximum amount of terminal nodes in the forest - importance=TRUE: Whether independent variables importance in the random forest be assessed
Nota: El bosque aleatorio se puede entrenar con más parámetros. Puedes consultar el viñeta para ver los diferentes parámetros.
Tunear un modelo es un trabajo muy tedioso. Hay muchas combinaciones posibles entre los parámetros. No necesariamente tienes tiempo para probarlos todos. Una buena alternativa es dejar que la máquina encuentre la mejor combinación para usted. Hay dos métodos disponibles:
- Búsqueda aleatoria
- Búsqueda de cuadrícula
Definiremos ambos métodos pero durante el tutorial entrenaremos el modelo usando la búsqueda de cuadrícula.
Definición de búsqueda de cuadrícula
El método de búsqueda de cuadrícula es simple, el modelo se evaluará sobre todas las combinaciones que pase en la función, mediante validación cruzada.
Por ejemplo, desea probar el modelo con 10, 20, 30 árboles y cada árbol se probará durante un número de intentos igual a 1, 2, 3, 4, 5. Luego, la máquina probará 15 modelos diferentes:
.mtry ntrees 1 1 10 2 2 10 3 3 10 4 4 10 5 5 10 6 1 20 7 2 20 8 3 20 9 4 20 10 5 20 11 1 30 12 2 30 13 3 30 14 4 30 15 5 30
El algoritmo evaluará:
RandomForest(formula, ntree=10, mtry=1) RandomForest(formula, ntree=10, mtry=2) RandomForest(formula, ntree=10, mtry=3) RandomForest(formula, ntree=20, mtry=2) ...
Cada vez, el bosque aleatorio experimenta con una validación cruzada. Una desventaja de la búsqueda en cuadrícula es la cantidad de experimentos. Puede volverse explosivo muy fácilmente cuando el número de combinaciones es alto. Para superar este problema, puede utilizar la búsqueda aleatoria.
Definición de búsqueda aleatoria
La gran diferencia entre la búsqueda aleatoria y la búsqueda en cuadrícula es que la búsqueda aleatoria no evaluará todas las combinaciones de hiperparámetros en el espacio de búsqueda, sino que elegirá combinaciones aleatoriamente en cada iteración. La ventaja es que reduce el costo computacional.
Establecer el parámetro de control
Procederá de la siguiente manera para construir y evaluar el modelo:
- Evaluar el modelo con la configuración predeterminada.
- Encuentra el mejor número de mtry
- Encuentra el mejor número de maxnodes
- Encuentra el mejor número de ntrees
- Evaluar el modelo en el conjunto de datos de prueba.
Antes de comenzar con la exploración de parámetros, necesita instalar dos bibliotecas.
- caret: biblioteca de aprendizaje automático de R. Si usted tiene instalar R con r-esencial. ya esta en la biblioteca
- Anaconda: conda instalar -c r r-caret
- e1071: biblioteca de aprendizaje automático R.
- Anaconda: instalación de conda -c r r-e1071
Puedes importarlos junto con RandomForest
library(randomForest) library(caret) library(e1071)
Configuración predeterminada
La validación cruzada K-fold está controlada por la función trainControl()
trainControl(method = "cv", number = n, search ="grid") arguments - method = "cv": The method used to resample the dataset. - number = n: Number of folders to create - search = "grid": Use the search grid method. For randomized method, use "grid" Note: You can refer to the vignette to see the other arguments of the function.
Puede intentar ejecutar el modelo con los parámetros predeterminados y ver la puntuación de precisión.
Nota: Utilizarás los mismos controles durante todo el tutorial.
# Define the control trControl <- trainControl(method = "cv", number = 10, search = "grid")
Utilizará la biblioteca de intercalación para evaluar su modelo. La biblioteca tiene una función llamada train() para evaluar casi todos máquina de aprendizaje Algoritmo. Dicho de otro modo, puedes usar esta función para entrenar otros algoritmos.
La sintaxis básica es:
train(formula, df, method = "rf", metric= "Accuracy", trControl = trainControl(), tuneGrid = NULL) argument - `formula`: Define the formula of the algorithm - `method`: Define which model to train. Note, at the end of the tutorial, there is a list of all the models that can be trained - `metric` = "Accuracy": Define how to select the optimal model - `trControl = trainControl()`: Define the control parameters - `tuneGrid = NULL`: Return a data frame with all the possible combination
Intentemos construir el modelo con los valores predeterminados.
set.seed(1234) # Run the model rf_default <- train(survived~., data = data_train, method = "rf", metric = "Accuracy", trControl = trControl) # Print the results print(rf_default)
Explicación del código
- trainControl(method=”cv”, number=10, search=”grid”): evalúa el modelo con una búsqueda en cuadrícula de 10 carpetas
- train(…): Entrena un modelo de bosque aleatorio. El modelo mejorado se elige con la medida de precisión.
Salida:
## Random Forest ## ## 836 samples ## 7 predictor ## 2 classes: 'No', 'Yes' ## ## No pre-processing ## Resampling: Cross-Validated (10 fold) ## Summary of sample sizes: 753, 752, 753, 752, 752, 752, ... ## Resampling results across tuning parameters: ## ## mtry Accuracy Kappa ## 2 0.7919248 0.5536486 ## 6 0.7811245 0.5391611 ## 10 0.7572002 0.4939620 ## ## Accuracy was used to select the optimal model using the largest value. ## The final value used for the model was mtry = 2.
El algoritmo utiliza 500 árboles y probó tres valores diferentes de mtry: 2, 6, 10.
El valor final utilizado para el modelo fue mtry = 2 con una precisión de 0.78. Intentemos conseguir una puntuación más alta.
Paso 2) Busca el mejor mtry
Puedes probar el modelo con valores de mtry del 1 al 10.
set.seed(1234) tuneGrid <- expand.grid(.mtry = c(1: 10)) rf_mtry <- train(survived~., data = data_train, method = "rf", metric = "Accuracy", tuneGrid = tuneGrid, trControl = trControl, importance = TRUE, nodesize = 14, ntree = 300) print(rf_mtry)
Explicación del código
- tuneGrid <- expand.grid(.mtry=c(3:10)): construye un vector con valor de 3:10
El valor final utilizado para el modelo fue mtry = 4.
Salida:
## Random Forest ## ## 836 samples ## 7 predictor ## 2 classes: 'No', 'Yes' ## ## No pre-processing ## Resampling: Cross-Validated (10 fold) ## Summary of sample sizes: 753, 752, 753, 752, 752, 752, ... ## Resampling results across tuning parameters: ## ## mtry Accuracy Kappa ## 1 0.7572576 0.4647368 ## 2 0.7979346 0.5662364 ## 3 0.8075158 0.5884815 ## 4 0.8110729 0.5970664 ## 5 0.8074727 0.5900030 ## 6 0.8099111 0.5949342 ## 7 0.8050918 0.5866415 ## 8 0.8050918 0.5855399 ## 9 0.8050631 0.5855035 ## 10 0.7978916 0.5707336 ## ## Accuracy was used to select the optimal model using the largest value. ## The final value used for the model was mtry = 4.
El mejor valor de mtry se almacena en:
rf_mtry$bestTune$mtry
Puede almacenarlo y utilizarlo cuando necesite ajustar otros parámetros.
max(rf_mtry$results$Accuracy)
Salida:
## [1] 0.8110729
best_mtry <- rf_mtry$bestTune$mtry best_mtry
Salida:
## [1] 4
Paso 3) Busca los mejores maxnodes
Debe crear un bucle para evaluar los diferentes valores de maxnodes. En el código siguiente, deberá:
- Crear una lista
- Cree una variable con el mejor valor del parámetro mtry; Obligatorio
- Crea el bucle
- Almacenar el valor actual de maxnode
- Resumir los resultados
store_maxnode <- list() tuneGrid <- expand.grid(.mtry = best_mtry) for (maxnodes in c(5: 15)) { set.seed(1234) rf_maxnode <- train(survived~., data = data_train, method = "rf", metric = "Accuracy", tuneGrid = tuneGrid, trControl = trControl, importance = TRUE, nodesize = 14, maxnodes = maxnodes, ntree = 300) current_iteration <- toString(maxnodes) store_maxnode[[current_iteration]] <- rf_maxnode } results_mtry <- resamples(store_maxnode) summary(results_mtry)
Explicación del código:
- store_maxnode <- list(): Los resultados del modelo se almacenarán en esta lista
- expand.grid(.mtry=best_mtry): utilice el mejor valor de mtry
- for (maxnodes in c(15:25)) {…}: Calcule el modelo con valores de maxnodes que comienzan entre 15 y 25.
- maxnodes=maxnodes: para cada iteración, maxnodes es igual al valor actual de maxnodes. es decir, 15, 16, 17,…
- key <- toString(maxnodes): almacena como una variable de cadena el valor de maxnode.
- store_maxnode[[key]] <- rf_maxnode: guarda el resultado del modelo en la lista.
- resamples (store_maxnode): organiza los resultados del modelo
- resumen (resultados_mtry): imprime el resumen de toda la combinación.
Salida:
## ## Call: ## summary.resamples(object = results_mtry) ## ## Models: 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 ## Number of resamples: 10 ## ## Accuracy ## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's ## 5 0.6785714 0.7529762 0.7903758 0.7799771 0.8168388 0.8433735 0 ## 6 0.6904762 0.7648810 0.7784710 0.7811962 0.8125000 0.8313253 0 ## 7 0.6904762 0.7619048 0.7738095 0.7788009 0.8102410 0.8333333 0 ## 8 0.6904762 0.7627295 0.7844234 0.7847820 0.8184524 0.8433735 0 ## 9 0.7261905 0.7747418 0.8083764 0.7955250 0.8258749 0.8333333 0 ## 10 0.6904762 0.7837780 0.7904475 0.7895869 0.8214286 0.8433735 0 ## 11 0.7023810 0.7791523 0.8024240 0.7943775 0.8184524 0.8433735 0 ## 12 0.7380952 0.7910929 0.8144005 0.8051205 0.8288511 0.8452381 0 ## 13 0.7142857 0.8005952 0.8192771 0.8075158 0.8403614 0.8452381 0 ## 14 0.7380952 0.7941050 0.8203528 0.8098967 0.8403614 0.8452381 0 ## 15 0.7142857 0.8000215 0.8203528 0.8075301 0.8378873 0.8554217 0 ## ## Kappa ## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's ## 5 0.3297872 0.4640436 0.5459706 0.5270773 0.6068751 0.6717371 0 ## 6 0.3576471 0.4981484 0.5248805 0.5366310 0.6031287 0.6480921 0 ## 7 0.3576471 0.4927448 0.5192771 0.5297159 0.5996437 0.6508314 0 ## 8 0.3576471 0.4848320 0.5408159 0.5427127 0.6200253 0.6717371 0 ## 9 0.4236277 0.5074421 0.5859472 0.5601687 0.6228626 0.6480921 0 ## 10 0.3576471 0.5255698 0.5527057 0.5497490 0.6204819 0.6717371 0 ## 11 0.3794326 0.5235007 0.5783191 0.5600467 0.6126720 0.6717371 0 ## 12 0.4460432 0.5480930 0.5999072 0.5808134 0.6296780 0.6717371 0 ## 13 0.4014252 0.5725752 0.6087279 0.5875305 0.6576219 0.6678832 0 ## 14 0.4460432 0.5585005 0.6117973 0.5911995 0.6590982 0.6717371 0 ## 15 0.4014252 0.5689401 0.6117973 0.5867010 0.6507194 0.6955990 0
El último valor de maxnode tiene la mayor precisión. Puedes probar con valores más altos para ver si puedes obtener una puntuación más alta.
store_maxnode <- list() tuneGrid <- expand.grid(.mtry = best_mtry) for (maxnodes in c(20: 30)) { set.seed(1234) rf_maxnode <- train(survived~., data = data_train, method = "rf", metric = "Accuracy", tuneGrid = tuneGrid, trControl = trControl, importance = TRUE, nodesize = 14, maxnodes = maxnodes, ntree = 300) key <- toString(maxnodes) store_maxnode[[key]] <- rf_maxnode } results_node <- resamples(store_maxnode) summary(results_node)
Salida:
## ## Call: ## summary.resamples(object = results_node) ## ## Models: 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 ## Number of resamples: 10 ## ## Accuracy ## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's ## 20 0.7142857 0.7821644 0.8144005 0.8075301 0.8447719 0.8571429 0 ## 21 0.7142857 0.8000215 0.8144005 0.8075014 0.8403614 0.8571429 0 ## 22 0.7023810 0.7941050 0.8263769 0.8099254 0.8328313 0.8690476 0 ## 23 0.7023810 0.7941050 0.8263769 0.8111302 0.8447719 0.8571429 0 ## 24 0.7142857 0.7946429 0.8313253 0.8135112 0.8417599 0.8690476 0 ## 25 0.7142857 0.7916667 0.8313253 0.8099398 0.8408635 0.8690476 0 ## 26 0.7142857 0.7941050 0.8203528 0.8123207 0.8528758 0.8571429 0 ## 27 0.7023810 0.8060456 0.8313253 0.8135112 0.8333333 0.8690476 0 ## 28 0.7261905 0.7941050 0.8203528 0.8111015 0.8328313 0.8690476 0 ## 29 0.7142857 0.7910929 0.8313253 0.8087063 0.8333333 0.8571429 0 ## 30 0.6785714 0.7910929 0.8263769 0.8063253 0.8403614 0.8690476 0 ## ## Kappa ## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's ## 20 0.3956835 0.5316120 0.5961830 0.5854366 0.6661120 0.6955990 0 ## 21 0.3956835 0.5699332 0.5960343 0.5853247 0.6590982 0.6919315 0 ## 22 0.3735084 0.5560661 0.6221836 0.5914492 0.6422128 0.7189781 0 ## 23 0.3735084 0.5594228 0.6228827 0.5939786 0.6657372 0.6955990 0 ## 24 0.3956835 0.5600352 0.6337821 0.5992188 0.6604703 0.7189781 0 ## 25 0.3956835 0.5530760 0.6354875 0.5912239 0.6554912 0.7189781 0 ## 26 0.3956835 0.5589331 0.6136074 0.5969142 0.6822128 0.6955990 0 ## 27 0.3735084 0.5852459 0.6368425 0.5998148 0.6426088 0.7189781 0 ## 28 0.4290780 0.5589331 0.6154905 0.5946859 0.6356141 0.7189781 0 ## 29 0.4070588 0.5534173 0.6337821 0.5901173 0.6423101 0.6919315 0 ## 30 0.3297872 0.5534173 0.6202632 0.5843432 0.6590982 0.7189781 0
La puntuación de precisión más alta se obtiene con un valor de maxnode igual a 22.
Paso 4) Busca los mejores ntrees
Ahora que tiene el mejor valor de mtry y maxnode, puede ajustar la cantidad de árboles. El método es exactamente el mismo que el de maxnode.
store_maxtrees <- list() for (ntree in c(250, 300, 350, 400, 450, 500, 550, 600, 800, 1000, 2000)) { set.seed(5678) rf_maxtrees <- train(survived~., data = data_train, method = "rf", metric = "Accuracy", tuneGrid = tuneGrid, trControl = trControl, importance = TRUE, nodesize = 14, maxnodes = 24, ntree = ntree) key <- toString(ntree) store_maxtrees[[key]] <- rf_maxtrees } results_tree <- resamples(store_maxtrees) summary(results_tree)
Salida:
## ## Call: ## summary.resamples(object = results_tree) ## ## Models: 250, 300, 350, 400, 450, 500, 550, 600, 800, 1000, 2000 ## Number of resamples: 10 ## ## Accuracy ## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's ## 250 0.7380952 0.7976190 0.8083764 0.8087010 0.8292683 0.8674699 0 ## 300 0.7500000 0.7886905 0.8024240 0.8027199 0.8203397 0.8452381 0 ## 350 0.7500000 0.7886905 0.8024240 0.8027056 0.8277623 0.8452381 0 ## 400 0.7500000 0.7886905 0.8083764 0.8051009 0.8292683 0.8452381 0 ## 450 0.7500000 0.7886905 0.8024240 0.8039104 0.8292683 0.8452381 0 ## 500 0.7619048 0.7886905 0.8024240 0.8062914 0.8292683 0.8571429 0 ## 550 0.7619048 0.7886905 0.8083764 0.8099062 0.8323171 0.8571429 0 ## 600 0.7619048 0.7886905 0.8083764 0.8099205 0.8323171 0.8674699 0 ## 800 0.7619048 0.7976190 0.8083764 0.8110820 0.8292683 0.8674699 0 ## 1000 0.7619048 0.7976190 0.8121510 0.8086723 0.8303571 0.8452381 0 ## 2000 0.7619048 0.7886905 0.8121510 0.8086723 0.8333333 0.8452381 0 ## ## Kappa ## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's ## 250 0.4061697 0.5667400 0.5836013 0.5856103 0.6335363 0.7196807 0 ## 300 0.4302326 0.5449376 0.5780349 0.5723307 0.6130767 0.6710843 0 ## 350 0.4302326 0.5449376 0.5780349 0.5723185 0.6291592 0.6710843 0 ## 400 0.4302326 0.5482030 0.5836013 0.5774782 0.6335363 0.6710843 0 ## 450 0.4302326 0.5449376 0.5780349 0.5750587 0.6335363 0.6710843 0 ## 500 0.4601542 0.5449376 0.5780349 0.5804340 0.6335363 0.6949153 0 ## 550 0.4601542 0.5482030 0.5857118 0.5884507 0.6396872 0.6949153 0 ## 600 0.4601542 0.5482030 0.5857118 0.5884374 0.6396872 0.7196807 0 ## 800 0.4601542 0.5667400 0.5836013 0.5910088 0.6335363 0.7196807 0 ## 1000 0.4601542 0.5667400 0.5961590 0.5857446 0.6343666 0.6678832 0 ## 2000 0.4601542 0.5482030 0.5961590 0.5862151 0.6440678 0.6656337 0
Ya tienes tu modelo final. Puedes entrenar el bosque aleatorio con los siguientes parámetros:
- ntree =800: se entrenarán 800 árboles
- mtry=4: se eligen 4 características para cada iteración
- maxnodes = 24: Máximo 24 nodos en los nodos terminales (hojas)
fit_rf <- train(survived~., data_train, method = "rf", metric = "Accuracy", tuneGrid = tuneGrid, trControl = trControl, importance = TRUE, nodesize = 14, ntree = 800, maxnodes = 24)
Paso 5) Evaluar el modelo
El cursor de la biblioteca tiene una función para hacer predicciones.
predict(model, newdata= df) argument - `model`: Define the model evaluated before. - `newdata`: Define the dataset to make prediction
prediction <-predict(fit_rf, data_test)
Puede utilizar la predicción para calcular la matriz de confusión y ver la puntuación de precisión.
confusionMatrix(prediction, data_test$survived)
Salida:
## Confusion Matrix and Statistics ## ## Reference ## Prediction No Yes ## No 110 32 ## Yes 11 56 ## ## Accuracy : 0.7943 ## 95% CI : (0.733, 0.8469) ## No Information Rate : 0.5789 ## P-Value [Acc > NIR] : 3.959e-11 ## ## Kappa : 0.5638 ## Mcnemar's Test P-Value : 0.002289 ## ## Sensitivity : 0.9091 ## Specificity : 0.6364 ## Pos Pred Value : 0.7746 ## Neg Pred Value : 0.8358 ## Prevalence : 0.5789 ## Detection Rate : 0.5263 ## Detection Prevalence : 0.6794 ## Balanced Accuracy : 0.7727 ## ## 'Positive' Class : No ##
Tiene una precisión del 0.7943 por ciento, que es superior al valor predeterminado
Paso 6) Visualice el resultado
Por último, puedes observar la importancia de la característica con la función varImp(). Parece que las características más importantes son el sexo y la edad. Esto no es sorprendente porque es probable que las características importantes aparezcan más cerca de la raíz del árbol, mientras que las características menos importantes a menudo aparecerán cerca de las hojas.
varImpPlot(fit_rf)
Salida:
varImp(fit_rf) ## rf variable importance ## ## Importance ## sexmale 100.000 ## age 28.014 ## pclassMiddle 27.016 ## fare 21.557 ## pclassUpper 16.324 ## sibsp 11.246 ## parch 5.522 ## embarkedC 4.908 ## embarkedQ 1.420 ## embarkedS 0.000
Resumen
Podemos resumir cómo entrenar y evaluar un bosque aleatorio con la siguiente tabla:
Biblioteca | Objetivo | Función | Parámetro |
---|---|---|---|
bosque aleatorio | Crear un bosque aleatorio | Bosque aleatorio() | fórmula, ntree=n, mtry=FALSE, maxnodes = NULL |
signo de intercalación | Crear validación cruzada de carpeta K | trenControl() | método = “cv”, número = n, búsqueda = “cuadrícula” |
signo de intercalación | Entrena un bosque aleatorio | entrenar() | fórmula, df, método = “rf”, métrica = “Precisión”, trControl = trainControl(), tuneGrid = NULL |
signo de intercalación | Predecir fuera de la muestra | predecir | modelo, nuevos datos = df |
signo de intercalación | Matriz de confusión y estadísticas | matriz de confusión() | modelo, prueba y |
signo de intercalación | importancia variable | cvarImp() | modelo |
Apéndice
Lista de modelos utilizados en el cursor.
names>(getModelInfo())
Salida:
## [1] "ada" "AdaBag" "AdaBoost.M1" ## [4] "adaboost" "amdai" "ANFIS" ## [7] "avNNet" "awnb" "awtan" ## [10] "bag" "bagEarth" "bagEarthGCV" ## [13] "bagFDA" "bagFDAGCV" "bam" ## [16] "bartMachine" "bayesglm" "binda" ## [19] "blackboost" "blasso" "blassoAveraged" ## [22] "bridge" "brnn" "BstLm" ## [25] "bstSm" "bstTree" "C5.0" ## [28] "C5.0Cost" "C5.0Rules" "C5.0Tree" ## [31] "cforest" "chaid" "CSimca" ## [34] "ctree" "ctree2" "cubist" ## [37] "dda" "deepboost" "DENFIS" ## [40] "dnn" "dwdLinear" "dwdPoly" ## [43] "dwdRadial" "earth" "elm" ## [46] "enet" "evtree" "extraTrees" ## [49] "fda" "FH.GBML" "FIR.DM" ## [52] "foba" "FRBCS.CHI" "FRBCS.W" ## [55] "FS.HGD" "gam" "gamboost" ## [58] "gamLoess" "gamSpline" "gaussprLinear" ## [61] "gaussprPoly" "gaussprRadial" "gbm_h3o" ## [64] "gbm" "gcvEarth" "GFS.FR.MOGUL" ## [67] "GFS.GCCL" "GFS.LT.RS" "GFS.THRIFT" ## [70] "glm.nb" "glm" "glmboost" ## [73] "glmnet_h3o" "glmnet" "glmStepAIC" ## [76] "gpls" "hda" "hdda" ## [79] "hdrda" "HYFIS" "icr" ## [82] "J48" "JRip" "kernelpls" ## [85] "kknn" "knn" "krlsPoly" ## [88] "krlsRadial" "lars" "lars2" ## [91] "lasso" "lda" "lda2" ## [94] "leapBackward" "leapForward" "leapSeq" ## [97] "Linda" "lm" "lmStepAIC" ## [100] "LMT" "loclda" "logicBag" ## [103] "LogitBoost" "logreg" "lssvmLinear" ## [106] "lssvmPoly" "lssvmRadial" "lvq" ## [109] "M5" "M5Rules" "manb" ## [112] "mda" "Mlda" "mlp" ## [115] "mlpKerasDecay" "mlpKerasDecayCost" "mlpKerasDropout" ## [118] "mlpKerasDropoutCost" "mlpML" "mlpSGD" ## [121] "mlpWeightDecay" "mlpWeightDecayML" "monmlp" ## [124] "msaenet" "multinom" "mxnet" ## [127] "mxnetAdam" "naive_bayes" "nb" ## [130] "nbDiscrete" "nbSearch" "neuralnet" ## [133] "nnet" "nnls" "nodeHarvest" ## [136] "null" "OneR" "ordinalNet" ## [139] "ORFlog" "ORFpls" "ORFridge" ## [142] "ORFsvm" "ownn" "pam" ## [145] "parRF" "PART" "partDSA" ## [148] "pcaNNet" "pcr" "pda" ## [151] "pda2" "penalized" "PenalizedLDA" ## [154] "plr" "pls" "plsRglm" ## [157] "polr" "ppr" "PRIM" ## [160] "protoclass" "pythonKnnReg" "qda" ## [163] "QdaCov" "qrf" "qrnn" ## [166] "randomGLM" "ranger" "rbf" ## [169] "rbfDDA" "Rborist" "rda" ## [172] "regLogistic" "relaxo" "rf" ## [175] "rFerns" "RFlda" "rfRules" ## [178] "ridge" "rlda" "rlm" ## [181] "rmda" "rocc" "rotationForest" ## [184] "rotationForestCp" "rpart" "rpart1SE" ## [187] "rpart2" "rpartCost" "rpartScore" ## [190] "rqlasso" "rqnc" "RRF" ## [193] "RRFglobal" "rrlda" "RSimca" ## [196] "rvmLinear" "rvmPoly" "rvmRadial" ## [199] "SBC" "sda" "sdwd" ## [202] "simpls" "SLAVE" "slda" ## [205] "smda" "snn" "sparseLDA" ## [208] "spikeslab" "spls" "stepLDA" ## [211] "stepQDA" "superpc" "svmBoundrangeString"## [214] "svmExpoString" "svmLinear" "svmLinear2" ## [217] "svmLinear3" "svmLinearWeights" "svmLinearWeights2" ## [220] "svmPoly" "svmRadial" "svmRadialCost" ## [223] "svmRadialSigma" "svmRadialWeights" "svmSpectrumString" ## [226] "tan" "tanSearch" "treebag" ## [229] "vbmpRadial" "vglmAdjCat" "vglmContRatio" ## [232] "vglmCumulative" "widekernelpls" "WM" ## [235] "wsrf" "xgbLinear" "xgbTree" ## [238] "xyf"