Pandas fuskblad för datavetenskap i Python
Vad är Pandas Cheat Sheet?
Pandas bibliotek har många funktioner, men några av dessa är förvirrande för vissa människor. Vi har här tillhandahållit en användbar resurs tillgänglig som heter Python Pandas fuskblad. Den förklarar grunderna i Pandas på ett enkelt och kortfattat sätt.
Oavsett om du är nybörjare eller har erfarenhet av Pandas, kan detta fuskblad fungera som en användbar referensguide. Den täcker en mängd olika ämnen, inklusive att arbeta med serier och DataFrame-datastrukturer, välja och beställa data och tillämpa funktioner på dina data.
Sammanfattningsvis, denna Pandas Python Cheat Sheet är en bra resurs för alla som vill lära sig mer om att använda Python för datavetenskap. Det är ett praktiskt referensverktyg. Det kan hjälpa dig att förbättra din färdigheter i dataanalys och arbeta mer effektivt med Pandas.
👉 Ladda ner PDF-filen av Cheat Sheet här
Förklara viktiga funktioner i Pandas:
För att börja arbeta med pandor-funktioner måste du installera och importera pandor. Det finns två kommandon för att göra detta:
Steg 1) # Installera Pandas
Pip installera pandor
Steg 2) # Importera pandor
Importera pandor som pd
Nu kan du börja arbeta med Pandas funktioner. Vi kommer att arbeta med att manipulera, analysera och rensa data. Här är några viktiga funktioner hos pandor.
Pandas datastrukturer
Som vi redan har diskuterat har Pandas två datastrukturer som kallas Series och DataFrames. Båda är märkta arrayer och kan innehålla vilken datatyp som helst. Det finns den enda skillnaden att Series är en endimensionell array och DataFrame är en tvådimensionell array.
1. Serie
Det är en endimensionell märkt array. Den kan innehålla vilken datatyp som helst.
s = pd.Series([2, -4, 6, 3, None], index=['A', 'B', 'C', 'D', 'E'])
2. DataFrame
Det är en tvådimensionell märkt array. Den kan innehålla vilken datatyp som helst och olika storlekar på kolumner.
data = {'RollNo' : [101, 102, 75, 99], 'Name' : ['Mithlesh', 'Ram', 'Rudra', 'Mithlesh'], 'Course' : ['Nodejs', None, 'Nodejs', 'JavaScript'] } df = pd.DataFrame(data, columns=['RollNo', 'Name', 'Course']) df.head()
Importerar data
Pandas har möjlighet att importera eller läsa olika typer av filer i din bärbara dator.
Här är några exempel nedan.
# Import a CSV file pd pd.read_csv(filename) # Import a TSV file pd.read_table(filename) # Import a Excel file pd pd.read_excel(filename) # Import a SQL table/database pd.read_sql(query, connection_object) # Import a JSON file pd.read_json(json_string) # Import a HTML file pd.read_html(url) # From clipboard to read_table() pd.read_clipboard() # From dict pd.DataFrame(dict)
Urval
Du kan välja element efter dess plats eller index. Du kan välja rader, kolumner och distinkta värden med dessa tekniker.
1. Serie
# Accessing one element from Series s['D'] # Accessing all elements between two given indices s['A':'C'] # Accessing all elements from starting till given index s[:'C'] # Accessing all elements from given index till end s['B':]
2. DataFrame
# Accessing one column df df['Name'] # Accessing rows from after given row df[1:] # Accessing till before given row df[:1] # Accessing rows between two given rows df[1:2]
Välj med boolesk indexering och inställning
1. Efter position
df.iloc[0, 1] df.iat[0, 1]
2. Efter etikett
df.loc[[0], ['Name']]
3. Efter etikett/position
df.loc[2] # Both are same df.iloc[2]
4. Boolesk indexering
# Series s where value is > 1 s[(s > 0)] # Series s where value is <-2 or >1 s[(s < -2) | ~(s > 1)] # Use filter to adjust DataFrame df[df['RollNo']>100] # Set index a of Series s to 6 s['D'] = 10 s.head()
Rengöring av data
För Python För att rensa fusket kan du utföra följande operationer:
- Byt namn på kolumner med metoden rename().
- Uppdatera värden med metoden at[] eller iat[] för att komma åt och ändra specifika element.
- Skapa en kopia av en serie eller dataram med metoden copy().
- Sök efter NULL-värden med metoden isnull() och släpp dem med metoden dropna().
- Kontrollera om det finns dubbletter av värden med metoden duplicated(). Släpp dem med metoden drop_duplicates() .
- Ersätt NULL-värden med metoden fill () med ett angivet värde.
- Ersätt värden med metoden replace().
- Sortera värden med metoden sort_values().
- Rangordna värden med metoden rank().
# Renaming columns df.columns = ['a','b','c'] df.head() # Mass renaming of columns df = df.rename(columns={'RollNo': 'ID', 'Name': 'Student_Name'}) # Or use this edit in same DataFrame instead of in copy df.rename(columns={'RollNo': 'ID', 'Name': 'Student_Name'}, inplace=True) df.head() # Counting duplicates in a column df.duplicated(subset='Name') # Removing entire row that has duplicate in given column df.drop_duplicates(subset=['Name']) # You can choose which one keep - by default is first df.drop_duplicates(subset=['Name'], keep='last') # Checks for Null Values s.isnull() # Checks for non-Null Values - reverse of isnull() s.notnull() # Checks for Null Values df df.isnull() # Checks for non-Null Values - reverse of isnull() df.notnull() # Drops all rows that contain null values df.dropna() # Drops all columns that contain null values df.dropna(axis=1) # Replaces all null values with 'Guru99' df.fillna('Guru99') # Replaces all null values with the mean s.fillna(s.mean()) # Converts the datatype of the Series to float s.astype(float) # Replaces all values equal to 6 with 'Six' s.replace(6,'Six') # Replaces all 2 with 'Two' and 6 with 'Six' s.replace([2,6],['Two','Six']) # Drop from rows (axis=0) s.drop(['B', 'D']) # Drop from columns(axis=1) df.drop('Name', axis=1) # Sort by labels with axis df.sort_index() # Sort by values with axis df.sort_values(by='RollNo') # Ranking entries df.rank() # s1 is pointing to same Series as s s1 = s # s_copy of s, but not pointing same Series s_copy = s.copy() # df1 is pointing to same DataFrame as df df1 = s # df_copy of df, but not pointing same DataFrame df_copy = df.copy()
Hämtar information
Du kan utföra dessa operationer för att hämta information:
- Använd formattribut för att få antalet rader och kolumner.
- Använd metoden head() eller tail() för att få de första eller sista raderna som ett exempel.
- Använd metoden info(), describe() eller dtypes för att få information om datatyp, antal, medelvärde, standardavvikelse, minimi- och maximivärden.
- Använd metoderna count(), min(), max(), sum(), mean() och median() för att få specifik statistisk information för värden.
- Använd metoden loc[] för att få en rad.
- Använd metoden groupby() för att tillämpa GROUP BY-funktionen för att gruppera liknande värden i en kolumn i en DataFrame.
1. Grundläggande information
# Counting all elements in Series len(s) # Counting all elements in DataFrame len(df) # Prints number of rows and columns in dataframe df.shape # Prints first 10 rows by default, if no value set df.head(10) # Prints last 10 rows by default, if no value set df.tail(10) # For counting non-Null values column-wise df.count() # For range of index df df.index # For name of attributes/columns df.columns # Index, Data Type and Memory information df.info() # Datatypes of each column df.dtypes # Summary statistics for numerical columns df.describe()
2. Sammanfattning
# For adding all values column-wise df.sum() # For min column-wise df.min() # For max column-wise df.max() # For mean value in number column df.mean() # For median value in number column df.median() # Count non-Null values s.count() # Count non-Null values df.count() # Return Series of given column df['Name'].tolist() # Name of columns df.columns.tolist() # Creating subset df[['Name', 'Course']] # Return number of values in each group df.groupby('Name').count()
Tillämpa funktioner
# Define function f = lambda x: x*5 # Apply this function on given Series - For each value s.apply(f) # Apply this function on given DataFrame - For each value df.apply(f)
1. Intern datajustering
# NA values for indices that don't overlap s2 = pd.Series([8, -1, 4], index=['A', 'C', 'D']) s + s2
2. Aritmetik Operamed fyllningsmetoder
# Fill values that don't overlap s.add(s2, fill_value=0)
3. Filtrera, sortera och gruppera efter
Dessa följande funktioner kan användas för att filtrera, sortera och gruppera efter serier och dataframe.
# Filter rows where column is greater than 100 df[df['RollNo']>100] # Filter rows where 70 < column < 101 df[(df['RollNo'] > 70) & (df['RollNo'] < 101)] # Sorts values in ascending order s.sort_values() # Sorts values in descending order s.sort_values(ascending=False) # Sorts values by RollNo in ascending order df.sort_values('RollNo') # Sorts values by RollNo in descending order df.sort_values('RollNo', ascending=False)
Exportera data
Pandas har möjlighet att exportera eller skriva data i olika format. Här är några exempel nedan.
# Export as a CSV file df df.to_csv(filename) # Export as a Excel file df df.to_excel(filename) # Export as a SQL table df df.to_sql(table_name, connection_object) # Export as a JSON file df.to_json(filename) # Export as a HTML table df.to_html(filename) # Write to the clipboard df.to_clipboard()
Pandas Cheat Sheet Slutsats:
pandas är öppen källkodsbibliotek i Python för att arbeta med datamängder. Dess förmåga att analysera, rensa, utforska och manipulera data. Pandas är byggda ovanpå Numpy. Det används med andra program som Matplotlib och Scikit-Lär dig. Den täcker ämnen som datastrukturer, dataurval, import av data, boolesk indexering, släppa värden, sortering och datarensning. Vi har också förberett pandor cheat sheet pdf för artikel. Pandas är ett bibliotek i Python och datavetenskap använder det här biblioteket för att arbeta med pandas dataramar och serier. Vi har diskuterat olika pandaskommandon i detta cheatsheet.
Colab från Cheat Sheet
Min Colab-träningsfil för pandor – Pandas fuskblad – Python för Data Science.ipynb